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Abstract
Epithelial–mesenchymal transition (EMT) is an important biological process
through which epithelial cells undergo phenotypic transitions to mesenchymal
cells by losing cell–cell adhesion and gaining migratory properties that cells use
in embryogenesis, wound healing, and cancermetastasis. An important research
topic is to identify the underlying gene regulatory networks (GRNs) governing
the decision making of EMT and develop predictive models based on the GRNs.
The advent of recent genomic technology, such as single-cell RNA sequencing,
has opened new opportunities to improve our understanding about the dynam-
ical controls of EMT. In this article, we review three major types of computa-
tional and mathematical approaches and methods for inferring and modeling
GRNs driving EMT. We emphasize (1) the bottom-up approaches, where GRNs
are constructed through literature search; (2) the top-down approaches, where
GRNs are derived from genome-wide sequencing data; (3) the combined top-
down and bottom-up approaches, where EMT GRNs are constructed and simu-
lated by integrating bioinformatics and mathematical modeling. We discuss the
methodologies and applications of each approach and the available resources for
these studies.
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1 INTRODUCTION

Epithelial–mesenchymal transition (EMT) is an important
cellular process, during which epithelial cells (E) convert
to mesenchymal cells (M) by changing their morphology
from cobblestone shape to spindle shape, losing tight cell–
cell adhesion, and gaining motility and invasiveness [1, 2].
EMT and its reverse process, mesenchymal–epithelial
transition (MET), have been shown to play a crucial role in
multiple biological phenomena, such as embryonic devel-
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opment, wound healing, and cancer metastasis [3]. It is
worth noting that recent studies have identified a spec-
trum of hybrid EMT states, featuring the coexistence of
both E andM traits [4, 5]. In a hybrid state, cells retain cell–
cell adhesion and meanwhile become motile, thus allow-
ing collective cell migration, a phenomenon related to can-
cer invasiveness [6].
To understand the properties of the EMT-related state

transitions, many experimental and computational studies
have been undertaken to elucidate the gene regulatory
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F IGURE 1 Graphical summary of the three broad approaches discussed in this review. (A) Bottom-up approaches (blue shaded box):
manual literature review or database search is used to construct a GRN, which is then modeled with mathematical modeling to elucidate the
network gene expression dynamics and the property of network control. GRNs are usually constructed based on simulation outcomes.
(B) Top-down approaches (red shaded box): algorithmic and statistical tools are used to infer GRNs from various omics assays of a dataset of
interest. GRNs are usually constructed based on statistical test. (C) Integrated top-down and bottom-up approaches (outermost box): these
studies combine mathematical modeling, with an emphasis on the system dynamics, with high-throughput bioinformatics assays to construct
GRNs that agree with both specific experimental observations and general understanding of EMT dynamics

mechanisms driving EMT. In particular, substantial
efforts have been made with computational systems
biology approaches to model EMT gene regulatory net-
works (GRNs). A high-quality GRN model can enhance
our understanding of the molecular drivers of EMT,
the relationship between various EMT states, and the
coupling of EMT with other biological processes. GRN
models also allow us to generate new predictions, such as
the outcomes of gene knockdown, which lead to testable
hypotheses for new experimental studies. So far, the
existing network modeling studies can be categorized into
three types: (1) the bottom-up approach, where GRNs are
derived from the analysis and synthesis of literature data,
followed bymathematical modeling for network dynamics
simulations; (2) the top-down approach, where GRNs
are derived from genomics data, such as gene expression,
by bioinformatics methods featuring statistical analysis;
(3) a more recent methodology that integrates both the
bottom-up and top-down approaches, typically involving
both bioinformatics and network simulations (Figure 1).
Here, we will explain and review these types of computa-
tional and theoretical studies on EMT GRNmodeling. For
each approach, we will discuss the methodology and its

applications and the currently available resources for its
studies.

2 THE BOTTOM-UP APPROACH

The most common and popular approach for modeling
EMT GRNs relies on an extensive literature search for
biological evidence of gene regulatory interactions, from
which researchers assemble a genenetwork.Mathematical
modeling is then applied to the constructed GRNs to eval-
uate their gene expression dynamics. A good GRN model
can not only capture the essential dynamical behavior of
a biological system, but also provides new testable predic-
tions for experimental validation, shedding new insights
and permitting a deeper understanding of the system. Due
to extensive previous studies on EMT [7, 8], abundant bio-
logical evidence for gene regulatory interactions during
EMT is available, particularly in the area of cancer research
[9, 10] and developmental biology [11]. These experimen-
tal studies have led to some successful modeling efforts
on EMT GRNs [12–14], where literature-based GRNs were
simulated to elucidate the heterogeneity of EMT states
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and the control mechanism of the cellular state transitions
between them. These simulation studies have generated
new predictions, which can then be tested experimentally.
GRN models in the bottom-up approach can be of three

categories: those that focus on a core gene regulatory cir-
cuit of EMT master regulators, those that model a large
GRN of detailed gene regulators and/or upstream signal-
ing pathways, and those that investigate the coupling of
EMT circuit with circuits of other biological processes. In
the following, we will describe the research efforts in those
directions.

2.1 Small EMT circuits

In a typical study using the bottom-up approach, one syn-
thesizes the literature data to construct a small circuit
model, from which one elucidates its regulatory mecha-
nism. Some early modeling studies on EMTGRNs focused
on core gene regulatory circuits, consisting of the EMT
master regulators: two microRNA families miR34 and
miR200 and two transcription factor families ZEB and
SNAIL [15, 16]. Thesemodels incorporated signaling nodes
such as transforming growth factor beta (TGF-β) to drive
the circuits and some targeted genes such as CDH1 and
VIM as circuit readout. Because of the essential role of
microRNAs in the translational regulation of key transcrip-
tion factors [17], newmathematical formalisms were intro-
duced [15, 18] to model microRNA-mediated translational
inhibition andmRNA degradation. A typical way to model
a GRN is to first write down the chemical rate equations
(typically ordinary differential equations) and then apply
nonlinear dynamics methods, such as nullcline and bifur-
cation, to identify the possible stable steady states of the
GRN. These ordinary differential equation (ODE)-based
modeling studies predicted not only the epithelial (E) and
mesenchymal (M) states, but also a hybrid state (E/M)with
features of both epithelial and mesenchymal phenotypes.
The predicted hybrid E/M state was later identified exper-
imentally [6], and its important role was found in tumori-
genesis [19, 20]. Core EMT circuit models have also been
carefully evaluated [21] and validated experimentally, for
example, by flow cytometry measurement of E-cadherin
and vimentin in TGF-β1-induced EMT of MCF10A cell
line [22]. Furthermore, energy landscape analysis has been
applied to the core EMT circuit, from which access to a
hybrid statewas shown to depend on the extracellular envi-
ronment [23].
These circuit models have further been extended to

incorporate additional genes, such as OVOL2, GRHL2,
Np63α, NFATc, and NRF2, with a research focus on their
role in stabilizing/destabilizing the hybrid state in cancer
metastasis [18, 24–28]. Recently, Celia-Terrassa et al. char-

acterized two distinct types of EMT dynamics (hysteretic
and nonhysteretic) through their ODE/PDE-based model-
ing of a small EMT circuit (TGF-β, Zeb1/2, miR-200, and
E-cadherin) and identified their association with metasta-
sis and clinical outcomes using mouse models [29].
Overall, these studies of the EMT circuits demonstrate

the usefulness of investigating small circuit models, typi-
cally constructed based on expert knowledge in the EMT
literature. Mathematical modeling of these small EMT
circuits sheds light on a mechanistic understanding of
EMT. However, in some cases certain regulators of inter-
est may not be captured by a small EMT circuit, therefore
researchers are also interested in constructing and model-
ing larger EMT GRNs.

2.2 Large EMT networks

Construction of large EMT GRNs relies on more extensive
literature search, typically incorporating (1) more detailed
gene components, including factors from the same gene
families, (2) signaling pathways upstream to EMT master
regulators, and (3) in some cases, readout nodes represent-
ing the downstream EMT-related processes.
In particular, Steinway et al. synthesized existing liter-

ature data and constructed a 70-node EMT network rep-
resenting the conserved regulation of EMT [30]. They
gathered interactions primarily from hepatocellular car-
cinoma (HCC) EMT and secondarily from other tissue
types, which produced an EMT GRN incorporating dif-
ferent molecular processes involving growth factors, sig-
nal transduction pathways, and transcription regulators.
They simulated the GRN using a Boolean network model
to understand the signaling abnormalities in the HCC
progression [30] and their implication of combinatorial
therapy by gene perturbation [31]. Here, Boolean network
models describe the node status (gene expression or activ-
ity of a biological process) with two discrete values (i.e., 0
and 1) and simulate the network dynamics by updating the
node status using Boolean functions [32]. Font-Clos et al.
extended the GRN to a 72-node network and performed
Boolean networkmodeling to construct a topographicmap
[33]. They studied the phenotypic stability of the topo-
graphic landscape using Ising model, where they identi-
fied a series of metastable hybrid EMT states, a prediction
that is supported by RNA-seq data from both lung ade-
nocarcinoma and embryonic differentiation. In a recent
study, Silveira et al. constructed an 18-node literature-
based EMT GRN to simulate EMT using Boolean network
modeling [34]. In addition, some researchers augmented
the literature-based approach by incorporating bioinfor-
matics methods to construct larger EMT networks [35, 36]
(details in Section 6).
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Besides, Huang et al. [37] extended a core EMT cir-
cuit [15, 16] to a 22-node GRN by incorporating EMT fac-
tors from Ingenuity Pathway Analysis [38] and additional
literature data [30, 31, 39, 40]. Instead of using Boolean net-
work modeling as in many other large network studies,
they devised a modeling method named random circuit
perturbation (RACIPE), an ODE-based modeling method
to generate an ensemble of kinetic models corresponding
to a fixed GRN topology. Because RACIPE allows to model
the time dynamics of continuous gene expression levels, it
can better capture the intermediate levels of gene expres-
sion and is more effective to characterize hybrid states
of a GRN, as supported by a recent study that compared
RACIPE and Boolean simulations for various EMT GRNs
of different sizes [41]. Also, with the RACIPE framework,
Kohar and Lu showed that stochasticity in gene regulation
and cell-to-cell variability can stabilize these hybrid EMT
states [42].
In summary, by carefully integrating an extensive

collection of literature data, researchers have developed
large size EMT GRNs, from which the dynamic features of
cellular state transitions can be identified. However, EMT
is not a standalone process, but tightly associated with
other biological processes, including, but not limited to,
intercellular communication by Notch signaling pathway,
cell motility, metabolism, cell proliferation, stem cell
differentiation, and immunity.

2.3 EMT circuits coupled with other
processes

Many efforts have been made to understand the role of
Notch signaling pathway in regulating EMT-induced cell
motility during normal development and cancer metasta-
sis [43–45]. These led to modeling the coupling between
the Notch–Delta signaling pathway and the EMT core cir-
cuit, which provided a mechanistic understanding of how
the hybrid E/M state induces andmaintains themetastatic
cellular clusters via intercellular communication [46, 47].
Cohen et al. developed a 30-nodeBoolean network to study
synergistic combination of Notch overexpression and p53
deletion in cancer metastasis [39].
Furthermore, several studies modeled the coupling

between metabolic pathways, EMT, and metastasis. Yu
et al. constructed a coarse-grained 4-node network model
of two metabolic pathways glycolysis and oxidative phos-
phorylation (OXPHOS) to study the interplay between the
two pathways and the gene regulation of metabolic plastic-
ity [48], with the implication of their roles in cancermetas-
tasis. Jia et al. further extended the network with detailed
interactions among regulatory genes andmetabolites; their
modeling predictions of metabolic plasticity were exper-

imentally validated using several cancer cell lines [49].
Subsequently, Kang et al. [50] modeled, with a landscape
approach, a 16-nodemetabolism-EMT-metastasis network
that integrates metabolism circuit [48], EMT core circuit
[15, 51, 52], and metastasis circuit [53]. Some recent math-
ematical models focused on mechanical interactions to
understand the gene regulation of cells losing cellular
cohesion during EMT [54–56].
In summary, researchers employed the bottom-up

approaches to construct EMT GRNs of different sizes,
whose mathematical modeling elucidated the regulatory
mechanism of EMT and its coupling with other pathways.
Despite its success in modeling EMT GRN, the bottom-up
approach is typically limited by the following factors: (1)
literature synthesis can be quite tedious and time consum-
ing; (2) because of the involvement of significant manual
curation, it is not straightforward to reproduce literature-
based GRNs; (3) there may not be sufficient literature
data to investigate the EMT process in a particular bio-
logical context. Additional information on the bottom-
up approach can also be found in some recent reviews
[14, 57–59].

3 THE TOP-DOWNAPPROACH

Another approach to model EMT GRNs is a top-down
approach of constructing networks from bioinformatics
algorithms using genome-wide sequencing data, such
as transcriptomics data (bulk and single-cell RNA-seq)
and epigenomics data (Assay for Transposase-Accessible
Chromatin [ATAC-seq], chromatin immunoprecipitation
[ChIP-seq]). These genome-wide data can be utilized
to unbiasedly infer transcription factor (TF)-target rela-
tions based on statistical association (such as correlation,
mutual information and regression) and their occurrence
in experimental and literature databases (such as TF-
target databases and TF binding motif database) [60–64].
One advantage of these top-down approaches is that they
help tailor the GRN to the dataset of interest by empha-
sizing interactions reflected in the (epi)genomics data
[65–68]. Compared to bottom-up approaches, top-down
approaches also streamline the network construction pro-
cess, making GRN modeling analysis more efficient and
reproducible. On the other hand, the top-down approaches
usually lead to large GRNs, therefore the network con-
struction is more liable to overfitting and is more adversely
affected by sparsity and noise in the data [69]. Moreover,
most bioinformatics-basedGRNs are not evaluated accord-
ing to their ability to capture network dynamics. Below,
we will summarize the basic components of top-down
methodologies and describe some of their recent applica-
tions to EMT.
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3.1 Bioinformatics algorithms for GRN
construction

The increasing availability of multiple omics studies rep-
resents an opportunity to develop a new, more cohesive
model of EMT regulation. Indeed, a rich resource of tran-
scriptomics and epigenomics data are publicly available on
the study of EMT GRNs, as summarized in Table 1 [5, 65,
67, 68, 70–92]. Many bioinformatics algorithms have been
developed to construct GRNs from these resources [60–64,
69]. In recent years, scRNA-seq data have become partic-
ularly popular for GRN construction, mainly because of
rapid advances in genomic technology and computational
methodologies. In the study of EMT, single-cell transcrip-
tomics can be especially important for the discovery of cell
phenotypic heterogeneity and the dynamical transitions
between cellular states [5, 36, 93]. Thus, network construc-
tion using scRNA-seq is more likely to generate networks
capturing these features of EMT.
Although different GRN construction methods have

their own approaches, they typically deploy common steps
of bioinformatic analyses as part of their algorithms. In
the following, we will take scRNA-seq data as an example
to illustrate these bioinformatic techniques. First, the raw
sequencing data need to be aligned to a reference genome
and converted to gene expression counts [94]. Second,
the count data are normalized by gene length and library
size and log-transformed [95]. The gene expression data
must also be processed to correct batch effects and/or
remove cells/genes with low counts [96]. Third, having
preprocessed the data, one can perform certain down-
stream analyses such as (1) visualizing the transcriptomic
landscape via dimensional reduction [97] (principal
component analysis [PCA] [98], t-stochastic neighbor
embedding [t-SNE] [99], uniformmanifold approximation
and projection [UMAP]) [100]; (2) identifying distinct
cellular phenotypes by gene expression clustering [101]
(k-means, hierarchical clustering, etc.); (3) identifying
important genes, pathways, or gene ontology (GO) terms
that are distinct between the cellular phenotypes using dif-
ferential expression analysis [102] (limma [103], DESeq2)
[104] and gene-set-based enrichment analysis (GSEA [105,
106], GSA [107], GSVA) [108]; (4) inferring pseudo-time
[109] in the case that time series data are unavailable.
Finally, there is a growing suite of software packages

designed to analyze single-cell sequencing data, some of
which have provided functionality for GRN construction.
For example, a package termed single-cell regulatory
network inference and clustering (SCENIC) [60] works by
identifying highly correlated modules of genes and cross-
referencing these with TF binding motifs from the cisTar-
get database [110]. Another method, Dynamic Regulatory
Events Miner (DREM) [111, 112], can be used to construct

dynamic GRNs from time series data by identifying time-
points where coexpressed genes diverge, using GO terms
to annotate the biological mechanisms behind each split.
Other tools like Cicero [113] are used to construct GRNs
from chromatin accessibility data instead of RNA-seq by
identifying regulatory elements coaccessible with gene
promoters [63, 114]. Recently, Pratapa et al. [69] developed
a framework entitled BEELINE to evaluate the quality of
network construction algorithms using scRNA-seq data
based on criteria including accuracy, scalability, and the
level of detail they output. The authors benchmarked 12
network construction algorithms with several simulated
and experimental datasets with known network topologies
and identified PIDC [115], GENIE3 [116], and GrnBoost2
[117] as having the best overall performance. They also
found that inaccurate pseudo-time labels can be detrimen-
tal, and thatmanymethods infer edges where only an indi-
rect relationship exists, creating unintended feedforward
structures. In summary, computational methods for GRN
construction are growing in number and sophistication.
Although sparsity and noise remain challenging obstacles,
these tools provide an accessible framework to infer
regulatory links from transcriptomics and epigenomic
data.

3.2 EMT GRN Construction

An example that encapsulates the top-down approach to
EMTmodeling is a 2016work fromChang et al. [118] where
the authors uncovered synergistic behavior of three EMT
regulators: ETS2,HNF4A, and JUNB. The authors first per-
formed RNA-seq on TGF-β treated A549 cells over a period
of 96 h, identifying three distinct, sequentially activated
groups of genes, which they associate to E, hybrid, and
M phenotypes. GO terms confirmed these findings, as the
gene sets enriched in the hybrid and M cells were increas-
ingly related to cell motility and adhesion. Interestingly,
however, certain canonical EMT markers like SNAI1/2,
TWIST1/2, and ZEB1/2 did not appear to be key regula-
tors in this dataset. Hypothesizing that important tran-
scription factors (TFs) may have been as yet unknown,
the authors performed binding motif enrichment for puta-
tive EMT TFs based on the time series data. They then
examined ChIP-seq data, finding additional evidence that
the candidate TFs indeed bind to the locations of hun-
dreds of differentially expressed genes in the experiment.
Finally, the authors applied DREM to the time series data
to pinpoint temporal changes in regulation.Major splitting
points were identified at the 6-h and 48-h timepoints and
included regulatory changes among the previously indi-
cated TFs, possibly reflecting transitions from E to hybrid
and hybrid toM states, respectively. The approach adopted
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TABLE 1 Published EMT transcriptomics and epigenomics datasets

Assay type Assay name Experiment Description Reference
Transcriptomic Microarray GSE121372 Human HPMCs treated with

TGF-b1
Han et al., 2019 [73]

GSE88762 EMT in mouse tumor-initiating
cells

Latil et al., 2017 [76]

GSE87877 EMT in mouse tumor-initiating
cells

Latil et al., 2017 [76]

GSE53923 Ovol2 in EMT in mouse terminal
end buds

Watanabe et al., 2014 [89]

GSE53175 EMT in a breast cancer primary
culture

Minafra et al., 2014 [79]

GSE39368 Molecular subtypes of head and
neck cancer

Walter et al., 2013 [86]

GSE42373 TGF-β/TNF-α-treated A549
spheroids

Wamsley et al., 2015 [87]

GSE17708 Time course of A549 cells treated
with TGF-β

Sartor et al., 2010 [82]

GSE17538 Four experiments, colon cancer
in humans and mice

Smith et al., 2010 [83]

GSE9691 E-cadherin loss in human
epithelial cells

Onder et al., 2008 [80];
Taube et al., 2010 [84]

RNA-seq GSE145850 MCF10A cells treated with TGF-β Johnson et al., 2020 [75]
GSE124843 Perturbing TGF-β and ZEB1 in

MCF10A
Watanabe et al., 2019 [90]

GSE110585 Hybrid EMT states in mouse
tumor tissues

Pastushenko et al., 2018
[81]

GSE70741 hESC differentiation into
hepatoctyes

Li et al., 2017 [77]

GSE88989 EMT in mouse tumor-initiating
cells

Latil et al., 2017 [76]

GSE59987 Hypoxia-induced EMT in human
cancer cells

Tsai et al., 2014 [85]; Wang
et al., 2020 [88]

scRNA-seq GSE147405 Time course scRNA-seq in
human cancer cell lines

Cook et al., 2020 [65]

GSE134432 scRNA-seq and ATAC-seq of
melanoma tissues

Wouters et al., 2020 [92]

GSE135893 EMT in pulmonary fibrosis and
healthy lungs

Habermann et al., 2020
[72]

GSE114687 EMT in MCF10A and HuMEC
cells

McFaline-Figueroa et al.,
2019 [78]

GSE137749 Two triple knockout SCLC
mouse models

Wooten et al., 2019 [91]

GSE110357 Hybrid EMT states in mouse
tumor tissues

Pastushenko et al., 2018
[81]

GSE114397 TGF-β-induced EMT in HMLE
cells

van Dijk et al., 2018 [71]

GSE100037 Mouse bone marrow lymphoid
progenitors

Herman et al., 2018 [74]

GSE87038 EMT in mouse organogenesis Dong et al., 2018 [5]
GSE103322 Head and neck cancer Puram et al., 2017 [67]

(Continues)
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TABLE 1 (Continued)

Assay type Assay name Experiment Description Reference
Epigenomic ChIP-seq GSE80218 Hypoxia-regulated EMT in

FADU cell line
Wang et al., 2020 [88]

GSE61198 EMT in normal and cancerous
mouse stem cells

Ye et al., 2015 [68]

GSM1303689 Ovol2 ChIP-seq in mouse
terminal end buds

Watanabe et al., 2014 [89]

GSE42374 TGF-β/TNF-α-treated A549
spheroids

Cieslik et al., 2013 [70]

ATAC-seq GSE145851 TGF-β-induced EMT in MCF10A
cells

Johnson et al., 2020 [75]

GSE134432 scRNA-seq and ATAC-seq of
melanoma tissues

Wouters et al., 2020 [92]

GSE114397 TGF-β-induced EMT in HMLE
cells

van Dijk et al., 2018 [71]

GSE110584 Hybrid EMT states in mouse
tumor tissues

Pastushenko et al., 2018
[81]

GSE70474 EMT in mouse tumor-initiating
cells

Latil et al., 2017 [76]

hMeDIP-seq GSE59989 Hypoxia-induced EMT in human
cancer cells

Tsai et al., 2014 [85]

by Chang et al. permitted a thorough and contextual anal-
ysis of EMT in A549 cells, despite the apparent lack of
activity amongmany canonical EMT factors. By examining
EMT on the basis of multi-gene signatures and quantified
trends in gene expression, top-downapproaches thus stand
to improve the accuracy and applicability of EMT GRNs.
Top-down approaches can also reveal context specific

(i.e., dependent on tissue type, time, input signal, etc.)
EMT regulatory mechanisms, by applying inference tools
to transcriptomic data or epigenetic sequencing likeATAC-
seq [65, 67, 68]. Cook and Vanderhyden recently examined
four cancer cell lines undergoing EMT induced via three
different signaling conditions, using time series measure-
ments to observe distinct trajectories and patterns of TF
activity according to the context of the EMT [65]. Only a
small number of the genes that responded to the three sig-
nals were shared across all conditions, demonstrating how
much context can influence the EMT regulatory network.
In another study, Wouters et al. [92] constructed GRNs
based on SOX10 KD-induced EMT in melanoma at vari-
ous timepoints by taking the consensus results of SCENIC
over 100 runs, supplementing SCENIC’s use of TF bind-
ing motifs with ATAC-seq chromatin accessibility infor-
mation. The authors found that much of the data could
be explained by a spectrum of melanocytic, intermediate,
and mesenchymal-like phenotypes, noting that the con-
sensus GRN for intermediate states was a stable mixture
of regulations from both extreme phenotypes. The authors
leveraged software tools and public repositories to map the

EMT trajectory in melanoma with a high degree of detail.
Although algorithmic GRN inference has far to go, in the
case of EMT many of these tools have proven capable of
recapitulating known findings and identifying new and/or
cell type-specific regulatory interactions.
Top-down, bioinformatic-based approaches to model

EMT have proven useful in characterizing the transcrip-
tomic landscape of EMT and even in algorithmically
constructing GRNs. This approach permits a thorough
analysis of the phenotypic space, with single-cell sequenc-
ing providing the necessary granularity to construct
GRNs that accurately reflect the observed distribution
of cell states. Additionally, computational tools can
make GRN construction more efficient, scalable, and
reproducible. However, despite many available tools and
datasets, constructing highly accurate EMT GRNs from
bioinformatics results alone has proven challenging.
Feature measurements are often noisy, impacting the
accuracy of downstream analyses. Additionally, it remains
challenging to distinguish, directly from the data, different
types of regulation (e.g., methylation, transcriptional,
translational) and identify key regulators. As a result,
automatically constructed networks are prone to contain
redundant structures or spurious links between genes that
may be in shared modules, but do not directly interact
[64, 69]. Although top-down analyses are especially useful
for examining phenotypic heterogeneity, algorithmically
constructed GRNs can benefit greatly from additional
validation or optimization. Mathematical network
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modeling is thus a natural progression from bioinfor-
matics approaches; inferred GRNs can be integrated into
dynamical models and interactions iteratively refined by
examining their dynamical properties in comparison to
experimentally observed behaviors.

4 COMBINED TOP-DOWNAND
BOTTOM-UP APPROACH

To overcome the limitations of both the bottom-up and
top-down approaches, some recent studies seek to com-
bine mathematical modeling with bioinformatic network
construction. This approach offers a number of potential
advantages as follows. First, EMT transition paths and key
regulators can depend on the system in which they occur,
so networks pulled together fromgeneral databases and lit-
erature search may not be relevant to a particular system
of interest [65, 78, 119]. In these scenarios, bioinformatic
analysis on associated transcriptomics and epigenetic data
can contribute to incorporate context-specific regulatory
relationships [35, 66, 91]. Second, the combined approach
can improve the quality of the GRNs constructed by bioin-
formatics methods, as mathematical modeling can eval-
uate whether the GRNs can capture the gene expression
dynamics of the biological process. Ideally, this approach
combines the features of simplicity and predictivity from
the bottom-up approach and the features of reproducibility
and robustness to literature bias/errors from the top-down
approach. Examples of studies with combined approaches
and their corresponding methodology are summarized in
Table 2 [35, 36, 42, 66, 91, 120–123].
One approach that combines top-down and bottom-up

methodologies is to first construct a large network, then
identify subnetworks that describe EMT in different con-
texts. Khan et al. [35] constructed an 879-node, 2278-edge
network for the E2F TF family based on extensive manual
review of published literature, characterizing its role in
processes includingEMT, cell cycle, DNA repair, and apop-
tosis. This large network, while comprehensive, would be
unwieldy to investigate in the context of specific tumor
types. Therefore, the authors identified subnetworks that
described EMT in breast and bladder cancer by identifying
the most important network structures in each type.
Motifs were ranked onmultiple metrics including involve-
ment in cancer pathways, fold-change between invasive
and noninvasive specimens, and topological properties.
They conducted Boolean simulations on 41- and 35-node
subnetworks for bladder and breast cancer respectively,
finding unique combinatorial EMT-inducing signals, each
associated with more aggressive tumors of their respective
tissue type in The Cancer Genome Atlas (TCGA) cohort
data [35]. By ranking key network motifs according to

multiple factors including transcriptomics data and topo-
logical properties, Khan et al. facilitate the construction of
GRNs that are highly representative of specific biological
conditions.
Udyavar et al. [36] describes another integrated study

examining subtypes of small cell lung cancer (SCLC).
Using ARACNE, a large network was generated and sub-
sequently filtered by cross-referencing with multiple bind-
ing site and databases including ENCODE [124], TRANS-
FAC [125], EnrichR [126], and PubMed [127]. Subsequent
Boolean simulations of this GRN predicted the expected
NE and ML subtypes, but failed to capture a hybrid phe-
notype present in tumor samples. In a follow-up work
by Wooten et al., a Boolean modeling approach called
BooleaBayes was developed that infers the probability that
each node is ON or OFF based on gene expression pat-
terns of similar states, allowing more nuanced relation-
ships than traditional Boolean modeling. Conducting in
silico perturbationswith BooleaBayes revealed likely stabi-
lizers and destabilizers of each SCLC subtype, suggesting
targets for therapies aimed at driving SCLC tumors froman
aggressive subtype to amore tractable one [91]. These stud-
ies together illustrate the complementary nature of top-
down with bottom-up methods: the initial top-down GRN
alone, while in agreementwith experimental data, failed to
accurately recapitulate the observed phenotypic landscape
in a simple mathematical model. Integrating systematic
validation against literature and binding motifs improved
the model’s predictive capabilities, with a more sophisti-
cated mathematical model finally bringing the simulated
results into close agreement with observed data.
Another strategy for combining top-down and bottom-

up methods is to begin from a well-supported, manually
curated core topology and augment it with a context-
specific set of interactions such that modeling can
approximate the observed bioinformatic data. Kohar et al.,
integrated a literature-based GRN with networks from
squamous cell carcinoma and modeled it with RACIPE.
The GRN simulations accurately depict the E, M, and
hybrid states observed in the gene expression data, with
further improvements in accuracy when gene expression
noise was implemented in the modeling [42]. The integra-
tion of SCC-specific topologies and well-established EMT
motifs improved the agreement between the steady states
predicted by RACIPE and those observed in the data. Fur-
thermore, some efforts have been made to systematically
generate the context specific interaction set while preserv-
ing the fundamental behavior of the core circuit. Ramirez
et al. combined a core EMT topology with new interac-
tions found by applying SCENIC to time series scRNA-seq
data comparing EMT in four cell lines as induced by
three different signaling conditions [65]. Considering
each experimental condition separately, Ramirez et al.
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TABLE 2 Combined-approach study methodologies

Reference Subject Modeling Bioinformatics Integration
Examples of GRN modeling of EMT
Khan et al., 2017 [35] E2F-mediated

EMT in cancer
Boolean network
simulations and
in silico
perturbations

E2F family interactions
curated from
TRANSFAC, STRING,
HPRD, MiRTarBase;
>98% validated by
domain experts

GRNs for breast and bladder
cancer constructed by
ranking global network
motifs by (1) topological
properties, (2) agreement
with gene expression in
target datasets, (3)
agreement with KEGG
cancer pathways

Udyavar et al., 2017 [36];
Wooten et al., 2019 [91]

EMT in SCLC Developed
BooleaBayes, a
Boolean network
modeling
framework that
can also estimate
probabilities

Clustering, weighted gene
coexpression network
analysis (WGCNA), and
GRN inference with
ARACNE filtered with
TF-target databases,
literature review

Boolean network modeling to
predict multiple SCLC
subtypes and
subtype-specific master
regulators

Kohar and Lu, 2018 [42] EMT in SCC Ensemble
ODE-based
simulations with
RACIPE and
stochastic noise

Incorporated GRNs from a
previous study on
Epcam+ and Epcam–
cells using RNA-seq and
ATAC-seq

Combination of manually
curated core EMT network
with SCC-specific
networks from previous
genome-wide study

Ramirez et al., 2020 [66] EMT in cancer Ensemble
ODE-based
simulations with
RACIPE

SCENIC used to infer
GRNs for each dataset
and identify conserved
and context-specific
interactions

Iterative GRN construction
and SCENIC parameter
optimization by comparing
simulated and
experimental data

Sha et al., 2020 [123] EMT in cancer
and
embryogenesis

Stochastic
ODE-based
multiscale
simulation of a
core EMT circuit

QuanTC is developed,
which identifies clusters,
marker genes, and
transition genes from
scRNA-seq data

QuanTC applied to multiple
EMT datasets to validate
the behaviors predicted by
the model

Examples of GRN modeling of other processes
Moignard et al., 2015
[120]

Mouse
hematopoiesis

Boolean network
modeling

Single-cell quantitative
reverse transcription
polymerase chain
reaction (qRT-PCR) on
∼40 genes; Developed
single-cell network
synthesis (SCNS) toolkit
to construct Boolean
networks from
discretized expression
data

Using SCNS, a GRN was
constructed to identify key
regulators, which were
later validated
experimentally

Dunn et al., 2014 [122];
Dunn et al., 2019 [121]

mESCs Abstract Boolean
network (ABN)
modeling—
ensemble
Boolean
networks based
on experimental
constraints

Initial coexpression
network from
microarray and RNA-seq
data, qRT-PCR and
clonal assays with siRNA
to test model predictions

Iteratively refined a
meta-model of multiple
Boolean networks by
experimentally validating
model predictions
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constructed, simulated, and refined context-specific
GRNs by testing an ensemble of network construction
parameters and finding the optimal GRN for each case.
The primary criteria for inclusion in the network were
(1) a correlation between regulator and target gene in the
expression data for the relevant cell line, and (2) proximity
to the core topology, as interactions were added incre-
mentally moving outward from the core (both upstream
and downstream). Although the resulting GRNs varied
between experimental conditions, they included several
highly conserved genes, suggesting that EMT may be
governed by a small set of master regulators with flexible
roles [66]. An iterative, optimization-based approach to
network construction is expected to greatly improve the
accuracy of EMT modeling studies.
This third category of studies, wherein networks are

constructed using both broadly supported evidence from
the literature and context-specific interactions from bioin-
formatics, then subsequently simulated with mathemati-
cal models, represents an evolution in quality and repro-
ducibility in EMT modeling research. Integrated studies
can not only identify genes of interest or infer individual
regulatory links but can make testable predictions about
complex dynamical behaviors andmaster regulators, facil-
itating the discovery of clinical tools targeting EMT.On the
other hand, integrated methodologies are early in devel-
opment, with few established best practices or formalized
workflows, and some critical limitations. One obstacle is
the breadth of background knowledge required to prop-
erly integrate bioinformatics with more traditional mod-
eling approaches. Moreover, combined approaches tend to
involve larger GRNs, which can be both more difficult to
validate experimentally and more computationally expen-
sive to model.

5 DISCUSSION AND PERSPECTIVES

One of the major challenges in biology is to understand
the gene regulatory mechanisms that determine the deci-
sion making of cellular state transitions. In this paper, we
reviewed three different types of computational systems
biology approaches for modeling EMT-associated GRNs.
The first approach relies on literature data for network
construction. Being the gold-standard methodology in the
field of systems biology, the literature-based method uti-
lizes network interactions derived from dedicated experi-
mental studies in biochemistry, cell biology and genetics,
most of them having high accuracy. Thus, the literature-
based approach results in high-quality GRNs to recapit-
ulate existing biology. However, it may not work well in
the case where biology literature is incomplete and/or
inconsistent (e.g., in the studies of cancer biology) [128]. It

is also tedious, time consuming, and error-prone to con-
struct a large GRN. Note that, although most literature-
based GRN modeling provides a list of experimental evi-
dences for GRN regulatory interactions, little is usually
given to describe how GRNs were constructed step by
step, making most of the literature synthesis steps irrepro-
ducible. The literature-based approach also does not work
well to study GRNs specific to a particular experimen-
tal condition, disease type, and subjects of certain genetic
background.
The second approach constructs GRNs using bioinfor-

matics analysis on genomics data from a specific experi-
ment. Being a mainstream approach in current genomics
and computational biology studies, it utilizes statistical
analysis on gene expression data (e.g., bulk RNA-seq,
scRNA-seq) and/or epigenetics data (such as ATAC-seq,
Hi-C) to identify potential gene regulatory interactions.
In some studies, literature data were also integrated, but
in the format of a database containing curated gene reg-
ulatory interactions, biochemical/metabolic reactions, or
from in silico prediction based on transcription factor bind-
ing sites. This approach addresses certain issues from the
former approach—in particular, it allows modeling for a
specific biological context and potentially identifying novel
interactions. Because of the top-down approach, it usu-
ally results in GRNs of larger size. However, it has been
shown that the current network construction methods are
still insufficient to construct high-quality GRNs [69]. One
of the issues is network redundancy. As many regulators
and interactions between them are redundant in a bio-
logical system to achieve robustness, it is hard to reverse
engineer the correct interactions back directly from data
such as gene expression. Moreover, although bioinformat-
ics is an ideal tool to identify regulators and biological path-
ways, it is seldom evaluated whether a GRN constructed
through bioinformatics can operate as a dynamic biolog-
ical system. This becomes a critical problem, particularly
in the studies of cellular state transition like EMT, as net-
work dynamics is an essential component of the biological
process.
The third approach combines both the bottom-up and

top-down approaches to construct GRNs. Conceptually,
this is a better way to address the issues of the previous
two approaches. By incorporating genomics data and lit-
erature databases together with mathematical modeling,
one can model context specific GRNs that capture the
dynamical behavior of cellular state transitions. We have
seen recent studies on EMT GRN modeling with such a
strategy, yet it remains a quite challenging task owing to
the following reasons. First, systems biology modeling and
bioinformatics belong to two very distinct research disci-
plines, making it difficult for researchers to grasp suffi-
cient knowledge to be experienced in both research fields.
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Second, building a high-quality GRN model remains diffi-
cult with the combined approach. It is not uncommon that
important regulators and/or signaling pathways,which are
well known in the literature, cannot be identified from
the genome-wide data directly. Thus, it is important to
have better databases containing high-quality regulatory
interactions and signaling pathways. More sophisticated
computational algorithms are also needed to accurately
identify context specific regulatory interactions, for exam-
ple, by integrating a variety of types of genomics data
and biological evidence. Third, as another central compo-
nent of this approach, a powerful mathematical model-
ing algorithm is needed to capture the dynamics of a large
GRN in an unbiased and efficient way. In particular, the
ensemble-based approach in some recent studies seems to
be a promising technique [37, 42, 66]. Last but not least,
experimental validation is crucial for better GRN model-
ing. As the constructed GRNs can be especially large, it is
important to devise validations, such as high-throughput
gene perturbation, that allow to evaluate the quality of a
large system. In summary, we foresee that the combined
top-down and bottom-up approach, although still in its
infancy, could be a powerful tool in the future GRNmodel-
ing studies on EMT and also other biological cellular state
transitions.
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