
ll
OPEN ACCESS
iScience

Article
A data-driven optimization method for coarse-
graining gene regulatory networks
Cristian Caranica,

Mingyang Lu

m.lu@northeastern.edu

Highlights
Coarse-graining gene

regulatory networks by

gene grouping and

topology optimization

Network coarse-graining

reveals important genes

and edges from a

regulatory network

The method can handle

networks with missing,

wrong-signed, or

redundant edges

Coarse-grained gene

circuits recapitulate

multiple gene expression

states

Caranica & Lu, iScience 26,
105927
February 17, 2023 ª 2023 The
Authors.

https://doi.org/10.1016/

j.isci.2023.105927

mailto:m.lu@northeastern.edu
https://doi.org/10.1016/j.isci.2023.105927
https://doi.org/10.1016/j.isci.2023.105927
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2023.105927&domain=pdf


iScience

Article

A data-driven optimization
method for coarse-graining
gene regulatory networks

Cristian Caranica1,2 and Mingyang Lu1,2,3,4,*

SUMMARY

One major challenge in systems biology is to understand how various genes in a
gene regulatory network (GRN) collectively perform their functions and control
network dynamics. This task becomes extremely hard to tackle in the case of
large networkswith hundreds of genes and edges,many of which have redundant
regulatory roles and functions. The existing methods for model reduction usually
require the detailedmathematical description of dynamical systems and their cor-
responding kinetic parameters, which are often not available. Here, we present a
data-driven method for coarse-graining large GRNs, named SacoGraci, using
ensemble-based mathematical modeling, dimensionality reduction, and gene cir-
cuit optimization by Markov Chain Monte Carlo methods. SacoGraci requires
network topology as the only input and is robust against errors in GRNs. We
benchmark and demonstrate its usage with synthetic, literature-based, and bioin-
formatics-derivedGRNs.We hope SacoGraci will enhance our ability tomodel the
gene regulation of complex biological systems.

INTRODUCTION

One of the major challenges in systems biology is to understand how gene regulatory networks (GRNs)

enable the creation and maintenance of cellular states and how they control and drive cellular state tran-

sitions in biological processes, such as cell differentiation and disease progression.1,2 Common ways to

construct GRNs3,4 are either by the bottom-up approach,5–7 in which gene regulatory interactions are

derived from literature data, or by the top-down approach8 in which bioinformatics methods are applied

on genome-wide omics data,9–13 such as transcriptomics data. The constructed GRNs often contain a large

number of genes and edges, making it hard to understand how GRNs operate and control their dynamics.

One strategy to address these issues is network coarse-graining, which constructs small core regulatory

circuits that capture the dynamical behavior of large GRNs. Large GRNs often contain many genes and

edges with redundant regulatory roles and functions, thus the redundant components can be combined

into simple network models.14–16 Compared to a large GRN, a small circuit model is more likely to capture

the most important network functions and to reveal the roles of genes and the relationship between genes.

Moreover, it is easier to fix errors or make changes in small GRNs than in those large counterparts because

of much reduced searching space.

Coarse-graining, sometimes referred to as model reduction, is a popular technique in physics, chemistry,

and engineering disciplines.17–22 Various coarse-graining methods have been developed in systems

biology to model GRNs.23–25 The most representative ones are based on timescale exploitation,26 optimi-

zation,27,28 lumping,29 or singular value decomposition.30 However, most existing methods require the

knowledge of the mathematical rate equations and detailed kinetic parameters of the full models, which

is not available in many cases. Moreover, it is often difficult for the existing methods to establish high-qual-

ity models from GRNs containing missing or inaccurate regulatory interactions.

To alleviate these limitations, here we present a new GRN coarse-graining method, named Sampling

coarse-Grained circuits (SacoGraci), to construct optimized small circuit topologies that capture the

gene expression states of a large GRN. SacoGraci first clusters the genes and models describing the

network’s behavior, followed by an optimization process that samples coarse-grained circuits (CGCs)
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producing gene expression patterns similar to those of the GRN. As the core of SacoGraci, network opti-

mization uses a new scoring function and multiple sampling schemes. Here, the scoring function quantifies

the dissimilarity of gene expression states between the small circuit and the large GRN based on the sim-

ulations of gene expression by an ensemble-based mathematical modeling method named RACIPE.31,32

Because RACIPE captures GRN’s gene expression states from an ensemble of models with randomly

generated kinetic parameters,33–37 there is no need to specify or optimize kinetic parameters in each score

evaluation. Such a feature allows us to focus on the optimization of circuit topology by a Markov chain

Monte Carlo (MCMC)-based sampling scheme,38 where the sampling space is determined by the topology

of the large GRN. SacoGraci has the advantage over most existing methods in that it only requires the GRN

topology as the input; it is robust against errors in large GRNs; and the optimization is independent to the

choice of model parameters.

In the following, we will first provide an overview of SacoGraci, with the detailed algorithms explained in

STAR Methods. We will then show the benchmark of SacoGraci on a large series of GRNs expanded

from two synthetic gene circuits and perturbed in the network topology by different levels. Finally, we

will illustrate its applications on four biological GRNs, including both literature-based and bioinformat-

ics-derived networks.

RESULTS

Overview of the coarse-graining algorithm SacoGraci

SacoGraci takes the topology of a large GRN as the input and identifies the optimal CGCs that best capture

the gene expression states of the full GRN. The workflow of SacoGraci is illustrated in Figure 1. First,

RACIPE is applied to the full GRN to simulate the stable steady-states gene expression profiles of an

Figure 1. Workflow of the gene network coarse-graining algorithm

The goal of algorithm is to construct, from a large gene regulatory network, coarse-grained circuits (CGCs) models that capture the network’s behavior. First,

given the topology of the full network, mathematical modeling method RACIPE simulates the steady-state gene expression profiles from an ensemble of

randomly generated models. Second, cluster analysis is applied to simulated data to identify clusters of genes, which represent coarse-grained nodes, and

clusters of gene expression profiles, which represent network states. Third, CGCs are constructed by Markov chain Monte Carlo (MCMC)-based

optimization, where circuit edges are chosen according to the regulatory interactions of the full network. The scoring function of the optimization is based on

the similarity of the states of CGC and the states of the full network.
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Figure 2. Benchmark tests on a synthetic gene circuit of three coupled toggle switches

(A) Topology of the original circuit.

(B) Topology of an expanded network. Every node of the original circuit is expanded into four nodes of the same color. Edges that will not be present in the

perturbed network are shown in bold.

(C) Topology of a perturbed network with a 30% edge perturbation level. Edges that have been added to the expanded network or have changed the sign

are shown in bold.

(D) Topology of the best last-iteration CGC obtained after running all MCMC methods for networks with 30% perturbation level.

(E) Heatmap of the RACIPE-simulated data for the original circuit.
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ensemble of mathematical models with randomly selected kinetic parameters. Second, clustering

analysis is applied to the simulated gene expression profiles to identify model clusters, each of which

defines a network state, and gene clusters, each of which defines a node in the CGC. The number of

network states and the number of circuit nodes can be either determined by biological context or be

considered as hyperparameters for optimization. Third, an optimization process is then applied to sample

candidate circuits and obtain the optimal CGCs by a MCMC method using a scoring function that quan-

tifies the mismatch between the network states of the CGC and those of the full GRN. The regulatory in-

teractions are sampled according to edge type (i.e., activation, inhibition, or no interaction) distributions

determined from the full GRN. During the score evaluation, RACIPE is applied to each candidate circuit

to obtain its stable steady-state gene expression profiles. Details of the SacoGraci procedures are

described in STAR Methods.

Benchmarking SacoGraci using synthetic circuits

We first benchmarked SacoGraci in identifying high-quality CGCs from a large GRN using two small

synthetic circuits. We started from each small circuit and expanded it to a large network with redundant

regulatory interactions derived from the small circuit. In the benchmark test, we applied SacoGraci to

the large network (the input) and evaluated whether the identified CGC recovers not only the gene

expression distribution of the original circuit but also its topology (ground truth). Many biological

networks may contain inconsistent edges (i.e., different excitatory or inhibitory edge types) even for genes

with similar roles. Due to the availability of biological data on gene regulatory interactions, literature-

derived GRNs may also contain inaccurate and missing edges. Thus, to evaluate the robustness of the

network coarse-graining, we also tested SacoGraci on large networks with different levels of edge

perturbations.

The first test case is a circuit of three coupled toggle-switches (diagram in Figure 2A). To generate the large

network, we expanded each of the six nodes of the original circuit to four genes (details in STAR Methods).

The final large network contains 24 genes (diagram in Figure 2B), where genes with the same color corre-

spond to the colored node of the original circuit. We clustered the models and the genes using hierarchical

clustering analysis (HCA) with Ward.D239 and one minus Pearson correlation as the distance function. As

shown in the heatmaps of simulated gene expression profiles generated by RACIPE, the gene expression

profiles from the large network (Figure 2F) form clusters of expression patterns similar to those obtained

from the original circuit (Figure 2E). Genes corresponding to the same node were also clustered together,

indicating that they play similar roles in network behavior. Thus, we chose four network states and four gene

clusters for network coarse-graining. The network states were clearly observed in the scatterplots of gene

expressions projected onto the first two principal components (PCs) of large GRN’s simulated data.

(Figures 2H and 2I).

From the expanded network, perturbed networks for six different perturbation levels (each level with ten

networks) were generated by randomly deleting, adding, and changing the signs of a proportion of edges,

as described in STAR Methods. These perturbed networks were used as the inputs to test SacoGraci (i.e.,

the perturbed network defines the edge type distributions for sampling CGCs). An example of a 30% edge-

perturbed network is shown in Figure 2C. For this perturbation level, SacoGraci identified the CGC shown

in Figure 2D as the best-scored last-iteration circuit across all sampling methods. The optimized CGC gen-

erates similar network states (Figures 2G and 2J) as the large network. The CGC also nicely captures the

Figure 2. Continued

(F) Heatmap of simulated gene expression of the expanded network. It shows the hierarchical clustering analysis (HCA) of the RACIPE models usingWard.D2

as linkage method and 1 minus Pearson correlation as distance. Four well-separated clusters are determined based on HCA.

(G) Heatmap of the simulated RACIPE models for the best CGC.

(H) Scatterplot of the simulated gene expression data of the original circuit projected onto the first two principal component (PC) axes of the expanded

network’s simulated data. RACIPE models belonging to the same cluster are colored with the same color.

(I) Scatterplot of the simulated data of the expanded network projected onto its first two PCs.

(J) Scatterplot of the simulated data of the best CGC projected onto the first two PCs of the simulated data of the expanded network.

(K) Boxplots of the distributions of the last scores (log-scale) obtained by each MCMC method for each network perturbation level.

(L) Boxplots for the distributions of edge mismatches of the last-iteration circuits and the original circuit for each MCMC method and each network

perturbation level. For each boxplot, the lower edge, middle edge, and upper edge correspond to 25th percentile, 50th percentile and 75th percentile,

respectively. The whiskers expand out to 1.5 times interquartile range. The black models in panels G and J correspond to models unclassified to any cluster

(labeled as UN)
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Figure 3. Benchmark tests on a synthetic gene circuit of a repressilator with self-activation loops

(A) Topology of the original circuit.

(B) Topology of an expanded network. Every node of the original circuit is expanded into three nodes of the same color. Edges that will not be present in the

perturbed network are shown in bold.

(C) Topology of a perturbed network with a 50% edge perturbation level. Edges that have been added to the expanded network or have changed the sign

are shown in bold.

(D) Topology of the second best last-iteration CGC obtained after running all MCMCmethods across all perturbation levels considered. The best last-score

CGC is the same as the original circuit.

(E) Heatmap of the RACIPE-simulated data for the original circuit.
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network states of the original circuit (Figures 2E and 2H), except for a lower proportion of models in the

third state (yellow) from the CGC.

Next, we compared the performance of circuit optimization using three differentMCMCsamplingmethods:

Metropolis-Hastings (MH), Simulated Annealing (SA), and Parallel Tempering (TE). Figures 2K and 2L sum-

marize the performance of all threeMCMCmethods for networks perturbed by different edge-perturbation

levels. Figure 2K shows the last-iteration scores of the samplingmethods for different levels of edge pertur-

bation. The scoremeasures themismatch between the expression profiles of theCGCand those of the large

network—the smaller the score, the better the matching. As expected, for each perturbation level, the me-

dian TE score is lower than the median SA score, which is lower than the median MH score. It is remarkable

that, for eachMCMCmethod, the scores do not increase significantly as we increased the perturbation level

from 12% to 50%. Only for the 60% edge-perturbation level, the median score of MH is slightly higher than

the othermedianMH scores. Even for this high perturbation level, we can obtain low scores. The best overall

score was obtained by an SA run from a network with 50% of edge perturbations. For eachMCMC sampling

method, we calculated the number of edge mismatches (existent vs. nonexistent, or different edge types)

between the last-iteration CGC and the original circuit. For instance, the number of edge mismatches be-

tween the original circuit (Figure 2A) and the optimal circuit (Figure 2D) is three, because the latter has three

edges not existing in the original circuit. As shown in Figure 2L, the number of edge mismatches is on

average between four and six for all MCMC methods and perturbation levels. Interestingly, many of these

mismatches are self-activation loops due to the mutual activations between genes from the same group in

the expanded networks (a median of 66.67%); but these self-activation loops are absent in the original cir-

cuit. Otherwise, we observed low levels of mismatches in all sampling methods. Moreover, we found all

MCMC runs converged within 1400 iterations (details in the STAR Methods section ‘‘detailed implementa-

tion of the MCMC sampling methods’’ and Figure S9). Overall, we found that the circuit optimization pro-

cedures are effective in identifying CGCs even for high levels of perturbations.

The second test case is a repressilator circuit,40 consisting of three self-activating nodes A, B, and C, where

A inhibits B, B inhibits C, and C inhibits A (diagram in Figure 3A). To generate the expanded network, we

expanded each node to threes genes, i.e., A is expanded to genes 1, 2, and 3; B to genes 4, 5, and 6; C to

genes 7, 8, and 9 (Figure 3B). Similar to the previous case, we expanded the circuit to a large GRN by con-

nectingmultiple copies of the original circuit with consistent edges. We also generated large networks with

different levels of edge perturbations. Figures 3C and 3D show an example of such a perturbed network

with 50% of edge perturbations and the last-iteration CGC obtained from SacoGraci. In this example,

the original circuit, the expanded network, and the CGC all generate very similar gene expression profiles,

as illustrated in Figures 3E–3J. Note that a repressilator is usually modeled to generate oscillatory dy-

namics.40 However, from an ensemble of models with randomly generated kinetic parameters, the

steady-state gene expression profiles capture the network states along an oscillatory trajectory.34 This ex-

plains why the coarse-graining scheme works very well for an oscillatory system here, where we match the

steady-state gene expression profiles. The last-iteration scores of all MCMC methods (Figure 3K) are

mostly very low, indicating that all methods obtained CGCs with a very good fit most of the time. In

fact, 90% of theMCMC runs produce the same last-iteration circuit as the original circuit. The original circuit

also produces the lowest score in this case. The number of edge mismatches between the last-iteration cir-

cuits and the original circuit (Figure 3L) is much lower than those from the first example. We observed a

Figure 3. Continued

(F) Heatmap of simulated gene expression of the expanded network. It shows the hierarchical clustering analysis (HCA) of the RACIPE models using Ward.D

as linkage method and 1 minus Pearson correlation as distance. Seven well-separated clusters are determined based on HCA. Gene clustering puts the

genes of the same color into the same group.

(G) Heatmap of the simulated RACIPE models for the second best CGC.

(H) Scatterplot of the gene expression data of the original circuit projected onto the first two PCs of the expanded network’s simulated data. RACIPE models

belonging to the same cluster are colored with the same color.

(I) Scatterplot of the simulated data of the expanded network projected onto the first two PCs.

(J) Scatterplot of the simulated data of best CGC projected onto first two PCs of the simulated data of the expanded network.

(K) Boxplots of the distributions of the last scores (log-scale) obtained by each MCMC method for each network perturbation level.

(L) Boxplots for the distributions of edge mismatches of the last-iteration circuits and the original circuit for each MCMC method and each network

perturbation level. For each boxplot, the lower edge, middle edge, and upper edge correspond to 25th percentile, 50th percentile and 75th percentile,

respectively. The whiskers expand out to 1.5 times interquartile range.The black models in panels G and J correspond to models unclassified to any cluster

(labeled as UN).
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slightly worse performance of circuit optimization for networks with high perturbation levels; yet TE usually

has the most stable and best performance for those cases. The performance of SacoGraci was also similar

when the circuits were expanded to GRNs with different group sizes and different ways of edge perturba-

tions (Figures S1–S4).

Coarse-graining a GRN of epithelial-to-mesenchymal transition (EMT)

In the previous section, we showed the performance of SacoGraci on a series of large GRNs expanded from

two synthetic circuits. Next, we illustrate the application of SacoGraci on four biological GRNs, including

three literature-derived networks and a network generated by bioinformatics analysis.

The first example is a GRN responsible for the decision making of EMT. During EMT, epithelial cells un-

dergo a phenotypic transition to mesenchymal cells by losing cell adhesion and gaining high motility.41

EMT has been found to play crucial roles in embryonic development, wound healing, and cancer metas-

tasis.42,43 The EMT GRN, which consists of 13 TF, 9 microRNAs, and 82 regulatory links between them

(network topology shown in Figure 4A), was previously constructed31 using the gene regulatory data

from the literature and Ingenuity Pathway Analysis.44

We first applied RACIPE to the EMT GRN and obtained stable steady states from 10,000 models (one

steady state per model). From hierarchical clustering analysis of the simulated gene expression profiles

(Figure S5), we observed two major clusters of models, representing the epithelial (E, with high CDH1

levels) and mesenchymal (M, with high VIM levels) states. We also observed a small fraction of models

with intermediate levels of gene expression. However, the models do not form distinct clusters in HCA,

Figure 4. Coarse-graining a gene network regulating epithelial-mesenchymal transition (EMT)

(A) EMT network topology.

(B) Heatmap of the RACIPE-simulated gene expression profiles from the EMT network. Each row represents a network gene, and each column represents a

simulated model. Clustering of the simulated RACIPE models was done using k-means clustering (k = 4) on the 2D points obtained from the simulated data

projected onto its first two PCs.

(C) Heatmap of the median values of the simulated models for each gene in each cluster. Red and yellow clusters correspond to epithelial and mesenchymal

states, respectively. Purple and orange clusters correspond to the hybrid states. Gene clustering was performed by HCA of this heatmap, where four gene

clusters were identified. Genes belonging to the same gene cluster are illustrated with the same color as those in the network diagram shown in panel A.

(D) Scatterplot of the simulated data of the full network projected onto its first two PCs.

(E) Network topology of the optimized CGC (second best).

(F) Heatmap of the RACIPE-simulated models from the optimized CGC. Each row represents a CGC node, and each column represents a RACIPE model.

(G) Heatmap of the median expression values of the simulated data of the optimized CGC. Each row represents a CGC node, and each column represents a

model cluster.

(H) Scatterplot of the simulated data of the CGC projected onto the first two PCs of the full network (panel D). Models corresponding to the same cluster are

illustrated with the same color.
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thus they are difficult to be separated from the E andM states. But when the same data were projected to its

first two PCs (Figure 4D), we can clearly observe these models (colored in purple and orange) away from the

E (red) and M (yellow) states. We performed k-means clustering (k = 4) of the data projected to the first two

PCs and successfully identified four distinct clusters of models associated with the E, M states and two

hybrid EMT states (Hy1 and Hy2). We opted to do the clustering in a supervised manner, by providing

the center clusters as the input to the 4-means algorithm. The model clustering is consistent with experi-

mental observations of hybrid EMT phenotypes.45–47

Once the model clustering has been determined, we then grouped genes based on the gene expression

patterns of different EMT states. We started from the RACIPE-simulated gene expression profiles (Fig-

ure 4B), computed the median expression values for each gene in each model cluster, and then performed

HCA again (Figure 4C). Here, the median values were computed in Figure 4C to emphasize on the gene

expression differences in the rare hybrid EMT states. From the last step, we obtained the gene clustering,

which we used to determine the nodes of CGCs. We decided that four gene clusters will be sufficient to

capture the expression patterns. The gene grouping, as annotated in Figure 4A, puts miR34a, miR141,

miR200a, miR200b, and miR200c in node A; miR101 and CDH1 in node B; KLF8, TCF3, SNAI1, SNAI2,

TWIST1, and TWIST2 in node C; and GSC, FOXC2, TGFb, VIM, ZEB1, and ZEB2 in node D. As the genes

miR205, miR9, and miR30c act as input nodes, i.e., nodes not regulated by other genes, they were not

considered for gene grouping. Genes in node A are major miRNAs responsible for inducing the epithelial

state.48 CDH1 (i.e., E-Cadherin) in node B is known to be regulated bymajor EMTmaster regulators, such as

SNAIL and ZEB families, and serves as a readout in previous EMT gene regulatory circuit models.16,49

MiR101 forms a toggle switch with SNAI1, while CDH1 forms a toggle switch with SNAI2. Also, miR101 in-

hibits ZEB1 and ZEB2, which are repressors for CDH1. All these interactions lead to a 0.91 Pearson corre-

lation between CDH1 and miR101 in simulated gene expression. Thus, CDH1 and miR101 were grouped

together in node B. Genes in nodes C and D are mainly regulators responsible for mesenchymal states.

With themodel clustering and gene grouping being determined, SacoGraci can then be applied to identify

the optimal CGCs with MCMC sampling. We ran all three MCMC methods and searched for the best-per-

forming CGCs. An example of such CGC (second best last-iteration circuit) is illustrated in Figure 4E. As

shown in the heatmaps (Figures 4F and 4G) and PCA results (Figure 4D and 4H), the simulated gene expres-

sion profiles from the CGC resemble those from the original EMT network, indicating a successful coarse-

graining. While the symmetry of the CGC would suggest that nodes A and B play similar roles and they

might as well be combined into a single node, we note that having both A and B help to distinguish be-

tween the two hybrid states.

In the optimal CGC, node A forms two double-negative feedback loops with nodes C and D, respectively.

These circuit motifs are consistent with the double-negative feedback loops formed by the miR34 and

SNAIL families (as in the case of the A-C loop) and those formed by the miR200 and ZEB families (as in

the case of the A-D loop). Both SNAIL and ZEB inhibit CDH1, CDH1 inhibits SNAI2, and miR101 inhibits

ZEB; all of these explain the B-C and B-D double-negative feedback loops. Interestingly, the CGC has a

directed interaction from node C to D, consistent with the gene regulation from SNAIL to ZEB. It is also

supported by the biological observations that the node C genes, such as TWIST and SNAIL families, are

usually activated prior to the activation of ZEB family.16,45,50 Moreover, the mono-directional interaction

is also largely consistent with the edge-type distributions from the large GRN. Taken together, the CGC

captures the major regulatory features of the large EMT network. Note that, in another CGC model

(best last-iteration CGC, as shown in Figure S6), C-to-D becomes bidirectional, but C-to-A becomes

mono-directional. Presumably, some asymmetry is needed to match well with full-network gene expres-

sion. Overall, the former CGC model is more consistent with experimental evidence of EMT.

Coarse-graining a GRN of small-cell lung cancer (SCLC)

The second example is a GRN of SCLC51 consisting of 33 transcription factors (Figure 5A). Previous studies

have shown that the network allows neuroendocrine/epithelial, mesenchymal-like, and hybrid pheno-

types.51 We also observed gene expression clusters associated with these phenotypes from the simulations

of the SCLC GRN using RACIPE (Figures 5B and 5C). From the HCA of the simulated gene expression data

(Figure 5B), we decided to group the genes into four nodes (grouping scheme illustrated in Figure 5A by

gene colors). With the defined model and gene grouping scheme, we performed the circuit optimization

with MCMC methods, where the best last-iteration CGC is shown in Figure 5D.
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In the optimal CGC, node A consists of ASCL1, an SCLC biomarker and a transcription factor involved in

neuronal commitment, and some other genes involved in neuronal development and differentiation,

such as SOX2, POU3F2, or TCF3.52–54 Node B consists of one single gene CEBPD, which has diverse cellular

functions depending on biological contexts. For example, CEBPD can act as a tumor repressor in pancre-

atic ductal adenocarcinoma55 or can contribute to proinflammation when activated by IL-6.56 Node C also

consists of one single gene NEUROD1, another SCLC biomarker associated with cell migration and metas-

tasis.57 Node D consists of mainly mesenchymal biomarkers, like ZEB1, and oncogenes, like MYC and

TCF7L2. The topology of the CGC (Figure 5D) reveals a toggle switch-like topology with an added readout

node (node C). Nodes A and B stimulate each other, and both form double-negative feedback loops with

nodeD. Note that the nodes like B andC contain a single gene, whichmay suggest the importance of these

genes in determining the behavior of the GRN. The optimal CGC is slightly larger than a previous reduced

model15 which combines the genes from A and B into one single node. When we applied SacoGraci to the

reduced (three-node) model, we obtained slightly worse results. The best three-node CGC (Figure S7C,

yellow cluster has a median PC1 value of 5.61) did not capture the epithelial state in the full network (yellow

cluster, with median PC1 value of 7.20 in Figure 5C) as well as the best four-node CGC (Figure 5F, yellow

cluster has a median PC1 value of 6.64). Moreover, we modeled CEBPD as a separated node because of its

distinct gene expression, as seen in the full GRN (Figure 5B).

Coarse-graining a GRN of gonadal sex determination (GSD) in human

The third example is a GRN established to model the differentiation process of GSD.58 GSD is an important

process during sex development, where bipotential gonadal primordium (BGP) differentiates either into

testes or ovaries.59 Mutations in genes involved in GSD regulation can lead to disorders in sex develop-

ment.60 From the simulation of 10,000 RACIPE models of the GSD GRN, we identified six clusters of

Figure 5. Coarse-graining a gene network involved in small-cell lung cancer (SCLC)

(A) SCLC network topology.

(B) Heatmap of the RACIPE-simulated gene expression profiles from the SCLC network (HCA with Ward.D2 and Pearson correlation). Each row represents a

network gene, and each column represents a simulated model. Three model clusters and four gene clusters were determined based on this clustering.

Genes belonging to the same gene cluster have the same color in the network diagram shown in panel A.

(C) Scatterplot of the simulated data of the SCLC network projected onto its first two PCs.

(D) Network topology of the best CGC.

(E) Heatmap of the simulated data of the best CGC. Each row represents a CGC node, and each column represents a simulated model.

(F) Scatterplot of the simulated data of the best CGC projected onto the first two PCs of simulated data of the full network. Models corresponding to the

same cluster are illustrated with the same color. There is a very small fraction (�0.7%) of models unclassified to any cluster (black points in panels E and F,

labeled as UN).
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gene expression states (Figures 6B–6D), which can be associated with various cellular states during GSD. In

particular, the red and brown clusters correspond to the differentiated granulosa cells and Sertoli cells,

respectively. The purple and orange clusters correspond to undifferentiated precursor cells, with the or-

ange one closer to the granulosa lineage and the purple one closer to the Sertoli lineage. The major dif-

ference between the differentiated and undifferentiated states is the levels of UGR, the node in the

GRN consisting of LHX1, LHX9, EMX2, PAX2, and PAX8 genes and representing the urogenital ridge, an

embryonic structure precursor of the gonads. UGR gene expression indicates whether the differentiation

process takes place (high UGR levels) or not (low UGR levels).59 The blue cluster has relatively high UGR,

GATA4, and granulosa cell-specific genes, such as WNT4 and FOXL2; thus, it likely corresponds to gran-

ulosa cells, but not fully differentiated. The yellow cluster has low levels of UGR and high levels of Sertoli

cell-specific genes, likely associated with a genetic disorder due to the low level of GATA4.61 Note that

the RACIPE modeling was able to identify much richer cellular phenotypes (six state clusters) than the pre-

vious Boolean network modeling (3 steady states).58

Next, from the median gene expression profiles of each model cluster (Figure 6C), we identified five gene

clusters from HCA (the grouping scheme illustrated with colors in Figure 6A) for coarse-graining. Figure 6E

shows the topology of best last-iteration CGC from SacoGraci. Note that the CGC captures very well all the

six states of the original GRN, even for those states with similar gene expression profiles, such as the two

undifferentiated states (purple and orange). In the CGC, node A consists of granulosa cell-specific genes

such as FOXL2, CTNNB1, RSPO1, or WNT4. The other gene in the node, NROB1 (a marker gene of gonadal

primordium BGP) is known to act antagonistically to SRY,62,63 the gene that triggers Sertoli cell differentiation.

Network begins differentiation toward ovaries when all the genes in node A are active. When active, CTNNB1

and FOXL2 inhibit Sertoli cell differentiation.58 Node B contains genes specific to Sertoli cells. The Sertoli cell

differentiation pathway gets activated by first activating SRY, which activates SOX9 and then the rest of the

genes in B in an activation cascade. The SOX9 activation is also followed by the repression of the granulosa

cell differentiation pathway.58,64 Node D contains one single gene UGR, again confirming its important role

in the GRN of GSD. Lastly, the genes from nodes C and E are specific to non-differentiated BGP.

Figure 6. Coarse-graining a gene network in human gonadal sex determination (GSD)

(A) GSD network topology.

(B) The heatmap of the simulated gene expression profiles of the GSD network, where six model clusters were determined.

(C) The heatmap of median values of the simulated models (HCA with Ward.D2 and Pearson correlation). From the HCA, five gene clusters were also

identified.

(D) Scatterplot of the simulated data of the GSD network projected onto its first two PCs.

(E) Network topology of the best CGC.

(F) Heatmap of the simulated models of the best CGC.

(G) Heatmap of median expression values of the simulated data of the best CGC.

(H) Scatterplot of the simulated data of the best CGC projected onto the first two PCs of the simulated data of the full network. Models corresponding to the

same cluster are illustrated with the same color.
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The CGC topology indicates a toggle switch-like behavior with many possible intermediate states. There are

twomain states of the CGC, one with high levels of nodeA and the other with high levels of nodes B,C, and E.

These two states are established and maintained by (1) the toggle switch between nodes A and B, (2) the tog-

gle switch between nodes A and E, (3) the activation links between nodes B, C, and E, and (4) node D that ac-

tivates nodesC and E and is repressed by nodeA. But nodeD is repressed by node E, which could explain the

existence of the undifferentiated states. Taken together, the optimal CGC not only captures the major cellular

states of the GSD network but also sheds light on the logics of gene regulation in the complex system.

Coarse-graining a GRN of TGF-b-induced EMT specific to a cancer cell line

Unlike previous examples where GRNs are literature based, the fourth example is a GRN constructed by a

combined bioinformatics and systems biology modeling approach (the diagram of the GRN topology illus-

trated in Figure 7A)36 using time-series scRNA-seq data of TGFB1-induced EMT in ovarian cancer cell line

OVCA420.65 From RACIPE simulations, we identified three gene expression clusters that can be associated

with the mesenchymal (M) state (yellow), and two epithelial-like states (the first one E I, in red, the second

one, E II, in blue) (Figures 7B and 7C). In this case, we found it is sufficient to capture gene expression var-

iations with four gene groups, thus being selected as the grouping scheme for coarse-graining.

Figure 7D shows the topology of best CGC obtained after coarse-graining the network using the MH algo-

rithm as the sampling scheme. The sampling space of possible topologies was very small in this case, so we

did not need to apply the more computationally intensive methods, i.e., SA and TE. The CGC topology

captures the main features of the full network. In the full network, the genes from node B, JUNB and

Figure 7. Coarse-graining a network of TGFB1-induced EMT in OVCA420 cancer cell line

(A) OVCA420 network topology.

(B) The heatmap of the simulated gene expression profiles of the network (HCA with Ward.D2 and Pearson correlation). From the HCA, three model clusters

and four gene clusters were determined.

(C) Scatterplot of the simulated data of the full network projected onto its first two PCs.

(D) Network topology of the best CGC.

(E) Heatmap of the simulated models of the best CGC.

(F) Scatterplot of the simulated data of the best CGC projected onto the first two PCs of the simulated data of the full network. There is a small fraction (�3%)

of models unclassified to any cluster (black points in panels E and F, labeled as UN).

ll
OPEN ACCESS

iScience 26, 105927, February 17, 2023 11

iScience
Article



ELK3, form toggle switches with the genes from node C, HMGA1 and NR2F2, respectively. This is reflected

in the CGC by the toggle switch between nodes C and B. Moreover, MYBL2 from node C and KFL6 from

node B repress the MYC gene from node D, which explains the inhibitory edges from C to D and B to D,

respectively. These interactions also explain how the E II state is allowed by the CGC.

Performance of coarse-graining of biological GRNs

The optimization process in SacoGraci allows us to generate an ensemble of optimal CGCs, which can be

further analyzed to evaluate the robustness of coarse-graining and its relationship with network edge

redundancy. To illustrate this utility, from a collection of last-iteration CGCs obtained by SacoGraci, we

performed additional analysis to evaluate the consistency of the CGCs and its relationship with network

redundancy, as shown in Figure S10. For any possible edge between two nodes in a CGC, we identified

the dominant edge type (activation, inhibition, or no edge) with the highest frequency among CGCs.

We then compared the percentage of dominant type in the CGCs (representing edge consistency of

CGCs, x axis) with the percentage of the dominant type among the edges in the large GRN connecting

the corresponding nodes (representing edge redundancy of the large GRN, y axis). Cases were excluded

when there is no edge in the large GRN between two gene groups. A low edge consistency and high edge

redundancy would indicate the flexibility of the edge choice during circuit optimization and suggest low

impact of the edge. While, a high edge consistency and low edge redundancy would indicate a potential

correction for errors in the original GRN, such as missing edges or edges with wrong signs. Figure S10 For

example, in the case of GSD network, all 23 optimal CGCs have an inhibitory edge from nodes E to A. How-

ever, in the full network, there is only one associated inhibitory regulation from NR5A1 to NR0B1 (Fig-

ure S10E), suggesting the important role of the E-to-A inhibition to network behavior.

Lastly, we also compared the performance of the three MCMC methods, MH, SA, and TE, in the above-

mentioned applications to four biological networks. Figure S8 shows the boxplots of last-iteration scores

obtained by these methods for the four networks. Particularly, for the third example where five-node CGCs

were optimized (Figure S8C), we observed that on average TE method generates CGCs with lower scores

than those from MH and SA, presumably because of larger sampling space allowed by the TE method.

When modeling circuits with less than four nodes, however, SacoGraci has similar performance among

MH, SA, and TE (Figures S8A, S8B, and S8D). Note that all these biological GRNs contain a high level of

redundancy, which explains why the performance of network coarse-graining is consistently high.

DISCUSSION

In this study, we introduced SacoGraci, a new coarse-graining algorithm for gene regulatory networks

based on ensemble-based mathematical modeling, dimensionality reduction, and gene circuit optimiza-

tion. The algorithm requires the topology of a GRN as the only input to produce the CGCs that are best

at reproducing the gene expression profiles of the large GRN. We benchmarked the effectiveness and

robustness of our method using two small synthetic circuits, each of which was expanded to large networks

with different levels of edge perturbation. In both cases, SacoGraci could successfully reproduce the gene

expression profiles and recover the topology of the original synthetic circuits, even when the edge-pertur-

bation level was as high as 60%. Furthermore, we successfully applied network coarse-graining to several

literature-based and bioinformatics-constructed GRNs. We expect SacoGraci to contribute to a better un-

derstanding of the gene regulatory mechanisms of biological networks and the role of regulatory interac-

tions to network dynamics. An ensemble of optimized CGCs also reveals the relationship of the robustness

of coarse-graining and network redundancy. We also expect the algorithm to be developed into a gener-

ally applicable framework able to coarse grain many other types of biological networks.

From our benchmark tests and biological network applications, we observed the following strengths of our

approach. First, in all cases, we could reproduce GRN’s expression patterns using CGCs of small sizes. These

circuits usually have only three to six nodes, but they are already sufficient in modeling large biological net-

works with up to six distinct cellular states. Second, the identified CGCs usually can preserve rare populations

of cellular states. This is due to the big penalty term in the scoring function that disfavors the CGCs not able to

capture all states. Third, the performance of themethod was sometimes insensitive to the choice of number of

coarse-grained nodes. For instance, in the case of the SCLC network, desired results have been obtained for

either three-node circuit or four-node circuit (Figures S7 and 5). Users may wish to rely on biological insights to

select themost appropriate size of CGC. Fourth, themethodworked well to handle large networks, e.g., those

containing asmany as 33 genes and 357 edges. The computational cost in general increases exponentially with
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the CGC size due to the increase in sampling space of CGC topologies. Restrictions imposed on what topol-

ogies can be sampled, e.g., due to edge-type distributions derived from the large GRN (see STAR Methods),

canmake the computational cost sub-exponential. For themost computationally intensive case we tested, i.e.,

coarse-grainingGSDusing five-node circuits, it took 4 h of running time forMHandSA and 5–6 h for TE (for two

NVIDIA K80GPU cards, with 2496 GPU cores per card). Here, theMH and SAmethods usually converged after

at most 400 iterations, while TE converged after around 200–250 iterations.

Limitations of the study

While SacoGraci proved very effective in finding CGCs that reproduce the behavior of a GRN to a great extent,

there could be a few limitations in certain situations. First, in the current approach, we assumed the RACIPE-

simulated gene expression profiles form clusters of spherical shape, which we use to approximate the model

assignment to each gene expression state. While the current scoring function works very well in our test cases,

this may generate assignment errors in some rare cases, where the spherical assumption is not satisfied. One

potential solution is to define a new distance function between gene expression distribution of a GRN and

that of a CGC using metrics, such as Kullback-Leibler divergence, Kolmogorov-Smirnov statistic test, or earth

mover’s distance. Second, we chose the number of CG nodes based on the number of gene clusters that can

reproduce the gene expression patterns of various model clusters. But there is no guarantee that, for instance,

using four-nodeCGCswouldget usmuchbetter results than using three-nodeCGCs. It wouldbe an interesting

question to identify the optimal number of coarse-grained nodes through optimization. Third, the quality of

network coarse-grainingandcomputational costmight strongly dependon the choice of the samplingmethod.

Here, we used threeMCMCmethods to sample candidate CGCs. Themost sophisticatedmethodwe applied,

the parallel tempering algorithm, produced the best overall results, but was usually slowest for largeGRNswith

large sampling space. Some other sampling algorithms might further improve the combined speed and accu-

racy, such as genetic algorithms or some other heuristic methods, especially for cases where the number of

coarse-grained nodes is more than five. For CGCs with less than five nodes, the simulated annealing method

would suffice to perform well within a short amount of time. Lastly, the current scoring function was designed

to match steady-state gene expression distributions, but not necessarily gene expression dynamics. It would

be helpful to incorporate the information of gene expression time dynamics during the circuit optimization.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Mingyang Lu (m.lu@northeastern.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� The SacoGraci R package, tutorial script, and all other data have been deposited on our GitHub re-

pository https://github.com/lusystemsbio/SacoGraci, and is publicly available as of the date of

publication.

� Additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

Simulating GRNs with RACIPE

We applied an ordinary differential equation (ODE)-based method, namely random circuit perturbation

RACIPE, implemented as an R package sRACIPE32, to simulate the stable steady states of a GRN.

RACIPE takes a network topology as the input and builds a system of ODEs that describes the network’s

dynamics. By randomly sampling the kinetic parameters of the ODE system from biologically relevant

ranges, RACIPE builds an ensemble of models, each of which as an instantiation of ODEs where all kinetic

parameters and initial conditions are randomly specified. These kinetic parameters reflect different char-

acteristics of the network, such as production and degradation rates for genes and parameters from shifted

Hill function for regulatory interactions. See the original RACIPE study31 for details of the methodology.

Each model is simulated by an ODE solver until convergence to a stable steady state. Finally, we obtained

a set of gene expression profiles from the analysis of an ensemble of models. A total of 10000 RACIPE

models were typically generated to ensure we captured robust features of the GRN. The steady state

gene expressions from these models usually form robust clusters, which can be further associated with

distinct cellular states. Thus, we can predict the potential cellular states only from the network topology.

Model clustering and gene grouping

From the RACIPE-simulated gene expression profiles of the large GRN, we aim to determine the distinct

patterns of gene expression and distinct groups of genes with shared dynamical behavior in the network.

To achieve this, SacoGraci performs hierarchical clustering analysis (HCA) to determine the number of

model and gene clusters by default. The other method we used for model clustering was k-means clus-

tering. However, users can also provide their own choices of the grouping scheme. For the HCA, we typi-

cally use a distance function of one minus Pearson correlation between the gene expression profiles of two

models and theWard’s D2 39 minimum variance method as the linkage method. The only exception was for

the case of the synthetic repressilator circuit with activation loops, where we used the older Ward’s D

method.

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

SacoGraci (R package) This paper https://github.com/lusystemsbio/SacoGraci

sRACIPE (R package) (Kohar and Lu, 2018) https://www.bioconductor.org/packages/

release/bioc/html/sRACIPE.html
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To evaluate the quality of the grouping scheme, we also recommend to visually examine the heatmap of

the clustered models and the scatterplot of gene expression profiles with low dimensional projection, us-

ingmethods such as principal component analysis (PCA). With a high-quality grouping scheme, the clusters

obtained from hierarchical clustering should form dense, compact scatterplot regions. Clusters that have

similar expression patterns and have very close or overlapping scatterplot regions might be combined. For

gene grouping, users can explore different number of gene clusters and/or incorporate prior knowledge

(such as the number of gene families involved in the biological context) into the pipeline. Each of the

gene group from the clustering analysis will be a node of the CGC. In our test cases we chose different

number of gene clusters (e.g., from three to five) to explore CGCs of different sizes.

Sampling coarse-grained circuits

In the previous step, SacoGraci defines the CG nodes from the clustering analysis. Now, we will determine

how the edges of CGCs are sampled. For each ordered pair ðA;BÞ of gene clusters, we determine the prob-

ability distribution of the edge type (activation, inhibition, no edge) from A to B. To do so, we examine all

possible edges from genes in A to genes in B from the full network and calculate the proportion of activa-

tion and inhibitory edges. This will give us the probability of an activation edge from A to B and probability

of an inhibitory edge from A to B, respectively. The remaining fraction determines the probability of having

no edge from A to B.

As mentioned above, the nodes of a CGC correspond to gene groups of the full network. Then, to build a

CGC we sample edges for all ordered pairs of nodes. The edge types are sampled according to the above

calculated edge type distributions. The only restriction we impose here is to get a connected topology with

no input nodes. RACIPE-simulated gene expression of an input gene/node looks like noise because

nothing regulates the expression of that input gene. That is why, whenever a large network has input nodes,

we delete them and apply SacoGraci to the remaining network. To obtain optimal CGCs, we defined the

scoring function (see next section) and utilized three Markov Chain Monte Carlo (MCMC) sampling

methods, i.e., Metropolis-Hastings (MH), Simulated Annealing (SA) and Parallel Tempering (TE)66 (see

the section after next).

Scoring function for circuit optimization

A scoring function is defined to compare the simulated gene expression profiles of a CGC with those of a

full network. For each CGC, we generate 10000 models with randomly selected kinetic parameters using

RACIPE. Each model is simulated by an ODE solver until convergence to a stable steady state, which is rep-

resented by a vector of gene expression values: xi = ðg1
i ;g

2
i ;.;gN

i Þ, where N is the number of genes in the

network and gj
i is the expression value of jth gene in the ith model.

For each model cluster C of the full network, we define its center,OC , as the median of the gene expression

vectors xi for every model i in the cluster C. We prefer medians to other possible choices, such as centroids,

as the median of a group of values is more robust to outliers than other statistics. Next, we permute all

10,000 RACIPE-simulated gene expression vectors. The permuted gene expression vectors take the form

xi;perm =
�
g1
i1
;g2

i2
;.;gN

iN

�
; (Equation 1)

where i1; i2;.; iN are values sampled from the set f1; 2;.;Mg, and the total number of models is M =

10000. Then, we define the radius of model cluster C, rC , as the ½a �M�th shortest Euclidian distance

from any of the permuted gene expression vectors to the center OC . Here [] is the integer part function

and a is a parameter selected from the set f0:01; 0:05; 0:10; 0:15; 0:20g to control the cluster radius rC .

Parameter a varies from network to network but is the same for all model clusters corresponding to a given

network. We also assume a spherical form of gene expression profiles for each model cluster. If rC is too

small, many of the models initially belonging to cluster C could be left outside of the sphere of radius

rC . If rC is too big, the sphere could includemodels with more than one gene expression pattern. In general,

it is recommended to choose a rather small rR. For a given network, to choose a, we start with a = 0:01 and

find the radius of each cluster. We check howmany models were left outside of the spheres. We choose the

next value of a if the number of left out models is bigger than 3% ofM. The maximum possible value of a is

0.20.
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With OC and rC computed for every model cluster of the full network, we then define the score of a given

CGC as follows. First, an ensemble ofMmodels are simulated with RACIPE for the CGC. Second, the gene

expression vectors of the CGC are expanded to the size of the full network by assigning the gene expres-

sion value of a CG node A to all the genes belonging to A in the full network. For instance, for a full network

of 7 genes and a CGC containing 3 nodes A;B;C, if A is a group of genes A = fg1;g2;g3g and B = fg4;g5g
and C = fg6;g7g, then a gene expression vector of a model of CGC, xCGC

i = ðgA
i ;g

B
i ;g

C
i Þ can be expanded

to a vector of the full network xexpi = ðgA
i ;g

A
i ;g

A
i ;g

B
i ;g

B
i ;g

C
i ;g

C
i Þ. Third, for each expanded vector xexpi ob-

tained in the previous step, we assign a scoring term Ei as the minimum ratio of the Euclidian distance

from xexpi to the cluster center OC and the cluster radius rC :

Ei = min
C

�
d
�
xexpi ;OC

�
rC

�
: (Equation 2)

When and only when Ei is less than 1, we assign the model i to the cluster that realizes the minimum:

Ci = argmin
C

�
d
�
xexpi ;OC

�
rC

�
: (Equation 3)

Sometimes, the ratio is less than 1 for multiple model clusters from the full network, indicating the

expanded CGmodel is within the ranges of multiple model clusters. But according to Equation (3), the clus-

ter with the minimum ratio is assigned. Eventually, each expanded CG model has an assigned score, and

many of them are also assigned to the model clusters of the full network. For each model cluster C, we

calculate the median score

EC = median
Ci = C

ðEiÞ: (Equation 4)

Here, EC reflects how well models from a CGC represent the gene expression patterns of a given cluster C

of the full network. Fourth, we define the total score as

Etot =
M

nC

X
C

EC +
X
Ei >1

Ei +Ep; (Equation 5)

where nC is the number of model clusters of the full network. The second term in Equation (5) gives pen-

alties to the expanded CG models not assigned to any cluster. In addition, if, for a certain cluster C, the

number of assigned CG models is less than half of the full-network models in the same cluster C, then a

penalty term of 50000 (Ep) is added to Etot .

Detailed implementation of the MCMC sampling methods

We used three Markov Chain Monte Carlo (MCMC) sampling methods to obtain optimal CGCs:

Metropolis-Hastings (MH), Simulated Annealing (SA) and Parallel Tempering (TE).66 We assume the prob-

ability of a CGC having the score Etot is given by a Boltzmann distribution

pðEtot ; TÞfe� Etot
kT ; (Equation 6)

where T is the temperature, and k is the Boltzmann’s constant (set to 1 here).

Since Etot only depends on the topology of the CGC, we use MCMC methods to sample different circuit

topologies as follows. During every iteration, we only change an edge of the current CGC. An edge is

picked at random from the current circuit and then we sample its type according to its edge type distribu-

tion determined by the topology of the full network.

Since the scoring function is based on RACIPE simulations of 10000 models, a new calculation of the score

for the same circuit will produce a slightly different result. To improve the efficiency and robustness of the

circuit optimization, we chose to calculate the score five times and take the average of the five scores as the

final score, when we sample a CGC for the first time. If the circuit is sampled at a later iteration, its score is

not calculated again.

For the synthetic circuit cases we chose ten different perturbed networks for each perturbation level (see

section ‘‘Expanding a small circuit and perturbing a full network’’). For each perturbed network, we run MH

and SA twice and TE once as follows: 1) We chose two different coarse-grained topologies as the starting

circuits for both MH and SA. 2) The same two circuits were also among the initial circuits of the TE method.
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The other initial circuits for the TE method were randomly generated according to the edge type distribu-

tions determined by the perturbed network. Total number of initial topologies used for TE was 24. 3) We

run MH, SA and TE using the initial circuits determined above and the edge type distributions given by the

perturbed network. All three MCMC methods were run for 1400 iterations.

To coarse grain the EMT, SCLC and GSD networks we applied a similar simulation scheme. In each case we

generated 20 CGCs that were used as starting circuits for both MH and SA. They were chosen in such a way

that the number of edge mismatches between them were as big as possible. That was to ensure we cover

different regions of the sampling space. The 20 initial circuits were also a part of the initial circuits of the TE

simulations. Initial number of topologies for TE method was 24. Both MH and SA were run in parallel using

20 threads, each thread running a simulation. The whole TE procedure was run 10 times for each of these

networks. We did not run SA and TE when we coarse-grained the OVAL420 network, as there were only a

few CGC topologies to sample in this case. All three MCMC methods were run for 1400 iterations.

Before starting the MCMCmethods, we run MH for 50 iterations. The purpose is to evaluate the magnitude

of the scores of the CGCs. Knowing this we can decide on the temperature value we need to use for running

MH and the temperature grids for SA and TE. We denote by EMH the last score we get from the preliminary

MH run. It is recommended that the temperature value for MH, TMH satisfies the condition

60<
EMH

TMH
<75: (Equation 7)

This rationale of the criterion in Equation (7) can be understood as follows. If the score of the current circuit

is Ecur , then the acceptance probability of a newly sampled circuit with score Enew is e
Ecur �Enew

TMH . If we assume

that Ecur has the magnitude of EEM, then, when the score is increased by 3%, the acceptance probability is

larger than 10% for TMH satisfying the above constraint. This will ensure a sufficient acceptance of newly

sampled circuits with slightly higher scores than the current one. In this study, for the coupled toggle

switches example, we chose TMH = 40; for the other examples, we chose TMH = 60.

For SAmethod we developed a temperature schedule consisting of 14 decreasing values, with the method

running 100 iterations for each temperature value. The first four temperature values ensured we did a deep

exploration of the sampling space. Next three values were within the range around TMH. As for reduction

rule of the temperature, we chose two geometric rates, one for the first seven values and one for the last

seven values. For the coupled toggle switches example, the starting temperature was 120, first decreasing

rate was 0.85, and the second decreasing rate was 0.6. For the other examples, the starting temperature

was 150, the first decreasing rate was 0.8, and the second decreasing rate was 0.6.

For TE method we created K = 24 replicas of the original Monte Carlo Markov chain. Each replica has its own

temperature and is engaged in its ownMarkov Chain Monte Carlo search for CGCs using MH. A temperature

grid T1 <T2 <.<TK is constructed with T1 = 1 corresponding to our target replica (our solution to the prob-

lem). The largest temperature was set to TKy
EMH

30 . That gives us a big chance of having an acceptance rate of at

least 50% for replica with temperature TK . Each replica can swap its state with one of the replicas of the neigh-

boring temperature. The acceptance probability of swaps between replicas with temperatures Ti and Tj is

ri;j = min

(
1;
p
�
Etot;j;Ti

�
p
�
Etot;i;Tj

�
pðEtot;i;TiÞp

�
Etot;j; Tj

�
)
; (Equation 8)

where pðEtot;i;TiÞ is the Boltzmann distribution with temperature Ti and Etot;i is the score of the current

circuit sampled by replica with temperature Ti.

To ensure a target swap rate for neighboring replicas around 0.4, we added new temperatures to the grid

according to a robust feedback-optimized method.67 First, we performed an update of sampled circuit to-

pology for each replica usingMH. Second, we proposed swaps between neighboring replicas L and L-1, L-1

and L-2,.,2 and 1, where L is the number of replicas. Third, we repeated the first and second stepsm times.

Fourth, for each pair of neighboring replicas (i, i-1), the following quantity was calculated:

Qi;i� 1 =
1

Ni;i� 1
swap

XNði;i� 1Þ
swap

l = 1

ln
�
rli;i� 1

�
; (Equation 9)
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N
ði;i� 1Þ
swap = m is the number of proposed swaps between replicas i and i-1, and rli;i� 1 is the acceptance prob-

ability for swapping i and i-1 at the lth attempt. If Ri;i� 1 =
h ffiffiffiffiffiffiffiffiffiffiffi

Qi;i� 1

ln ð0:4Þ
q i

> 0, then we add to the grid Ri;i� 1 tem-

peratures, evenly spaced between Ti� 1 and Ti . This temperature grid addition process was performed

three times to make sure there were enough temperatures on the grid to prevent isolation of replicas.

The values of m for the three runs of the procedure were 50,100 and 150, respectively. After the tempera-

ture addition process, the first and second steps described above were performed for another 1100 times.

The initial temperature grid for the coupled toggle switches example was {1, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3,

1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 6, 9, 11, 13, 20, 28, 40, 55, 70, 85, 100}. For the other examples the initial grid was {1,

1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 6, 9, 11, 13, 20, 28, 40, 55, 70, 90, 120}.

We found the optimization simulations usually converged (no more than 5% changes in scores for 100

consecutive iterations) at the end of the 1400-interation runs, as illustrated in Figure S9. For the most

computationally intensive case we tested, i.e., coarse-graining GSD using five-node circuits and bench-

marking the synthetic circuit with six nodes, it took 4 hours of running time for MH and SA and 5-6 hours

for TE (using NVIDIA K80 GPU cards, with 2496 GPU cores per card) to converge. For the other cases it

took about 3 hours for MH and SA to converge and 4 hours at most for TE. The only exception was for

the EMT case where some MH and SA simulations showed high variation for many iterations (Figure S9C).

It took about 8-9 hours for these simulations to converge. The above times are for running simulations using

parallel computing (40 computing threads). Note that, in one such parallel job, we were able to run 20 MH

simulations or 20 SA simulations, but just one TE simulation within the timeframe described above. In the

case of limited computing resources, we recommend using simulated annealing with different initial cir-

cuits, while employing the above-mentioned convergence criterion.

Expanding a small circuit and perturbing a full network

For benchmarking the MCMC sampling methods to obtain optimal CGCs, we started with a small gene

circuit (the ground truth) and expanded it to a large network that reproduces the similar gene expression

patterns of the circuit. To achieve this, we replaced each node in the circuit by three or four genes. We con-

nected the genes corresponding to the same node by many activation links. That ensures that these genes

will have a similar gene expression pattern. For two nodes connected by a directed edge in the small circuit,

we connected the corresponding genes by 3 to 6 edges of the same type going in the same direction. Here,

we created multiple copies of the original circuit (four copies for the coupled toggle-switches, three for the

repressilator) and connected them with edges consistent with edges of the original circuit.

To evaluate the robustness of the coarse graining algorithm when some inconsistent interactions are pre-

sented in the expanded network, we generated networks with perturbed topologies. To perturb a network

by a certain degree, we changed its topology as follows. For a certain perturbation level a and a network of

h edges, we would need to make a total of ah edge changes, each of which is either change of the sign

(activation or inhibition) of an edge (50% chance), adding an edge (25% chance), or deleting an edge

(25% chance). We required that the resulting perturbed network to be connected and have no input nodes.

The perturbation levels a were chosen from f12%;20%;30%;40%;50%;60%g. To ensure a good coverage of

the sampling space, for each perturbation level we first randomly generated 20 perturbed topologies.

Then, for each one of them we calculated average number of edge mismatches with the other 19 topol-

ogies. We chose the top ten topologies with the most mismatches as our perturbed networks. This ensures

that the chosen perturbed networks are most different from one another.
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